MDM293 OEM Differential

Pressure Sensor

Features

- Pressure Range: 0kPa~200kPa...3.5MPa
- Constant current or constant voltage power supply
- Isolated construction, suitable for various fluids
- OEM differential pressure sensor
- Full stainless steel 316L
- High static pressure 20MPa

Applications

- Industrial process control
- Differential pressure measurement
- Gas, liquid pressure measurement
- Pressure gauge
- Pressure calibrator
- Venturi and vortex flow meters

Introduction

MDM293 Piezoresistive Differential Pressure Sensor is an OEM sensitive element with a stainless steel isolated diaphragm. It features a small size, high static pressure resistance, and longterm stability. Both pressure sides are protected by diaphragms, allowing measurement with corrosive and conductive fluids. Differential pressure is transmitted through the diaphragm and silicone oil to the die for accurate measurement. This product utilizes a piezoresistive pressure sensor die, and is assembled on the advanced production line, automatically tested and compensated for high accuracy. It is widely used in industrial process control and differential pressure measurement.

Electrical Performance

Power Supply: ≤2.0mA DC

Electrical connection: 100mm silicone wires

Common mode voltage output: 50% of input (typ.)

Input Impedance: $2k\Omega \sim 5k\Omega$

Output Impedance: $3.5k\Omega\sim6k\Omega$

Response time(10%~90%): <1ms

Insulation resistance: 100MΩ@100V DC

Max. static pressure: 20MPa

Zero drift or static pressure: ≤0.5mV/MPa

Construction Performance

Diaphragm: Stainless steel 316L

Housing: Stainless steel 316L

Pin: 100mm silicone wires

O-ring: FKM

Net weight: ~20g

Oil filling: Silicone oil

Environment Conditions

Vibration: No change at 10gRMS, (20~2000)Hz

Shock: 100g, 11ms

Medium compatibility: Liquid or gas compatible with

stainless steel and FKM

Basic Conditions

Medium temperature: (35±1)°C

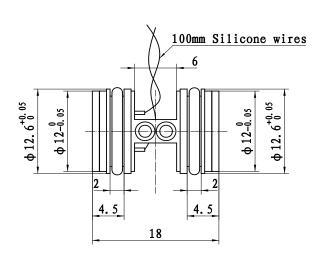
Ambient temperature: (35±1)°C

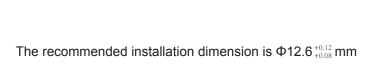
Vibration: 0.1g (1m/s²) Max

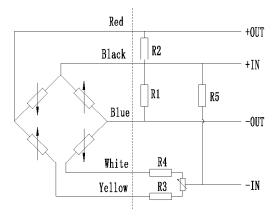
Humidity: (50±10)%RH

Ambient pressure: (86~106)kPa

Power supply: (1.5±0.0015) mA DC

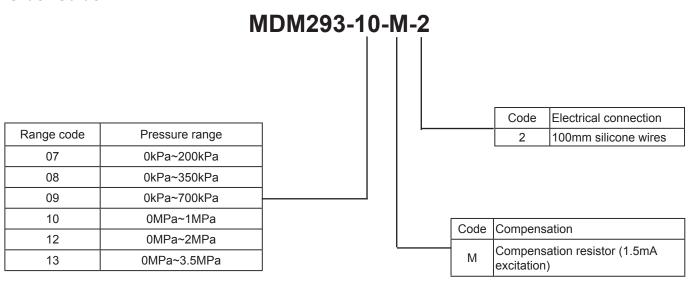

Specifications


Item*	Min.	Тур.	Max.	Units
Pressure nonlinearity		±0.15	±0.25	%FS,BFSL
Pressure repeatability		±0.05	±0.075	%FS
Pressure hysteresis		±0.05	±0.075	%FS
Zero output			±3.0	mV DC
Output/Span**	60			mVDC
Zero thermal error		±0.75	±1.0	%FS, @35℃
Span thermal error		±0.75	±1.0	%FS, @35℃
Compensation temp. range	0 ~ 70			°C
Operating temp. range	-40 ~ 125			°C
Storage temp. range	-40 ~ 125			°C
Long-term stability error		±0.3	±0.5	%FS/Year


Outline Construction

Unit: mm

Electrical Connection


Wire color	Definition		
Black	+IN		
Yellow	-IN		
White	-IN		
Red	+OUT		
Blue	-OUT		

Testing at basic condition
* Output/Span=full scale output - zero point

Notes

- 1. The arrow-marked resistor bridge to the left of the dashed line is the bridge circuit of the die.
- 2. Please check the specification label enclosed with the products for the actual electrical connection method.
- 3. MDM293 M-type sensor requires external resistors for zero and temperature drift compensation, using a 5-wire connection (as shown in the figure). The zero adjustment resistor (R3 or R4) is connected, with the other resistor (R4 or R3) shorted to serve as the power supply negative terminal. R1 or R2 is the zero temperature drift compensation resistor, with only one needed, and the other left open, as specified in the specification label. R5 is the sensitivity temperature compensation resistor. For optimal performance, external compensation resistors should be placed as close to the differential pressure sensor as possible.

Order Guide

Notes

- 1. The default unit of the product is kPa. 1kPa=0.01bar.Pay attention to protect the isolation diaphragm of sensitive components to prevent any irreversible deformation.
- 2. One side with leads is high-pressure side, and the other is low-pressure side. High and low-pressure sides can also be identified by the "+" and "-" markings. The pressure on the high-pressure side should generally not be lower than on the low-pressure side.
- 3. Protect the isolated diaphragm to prevent irreversible deformation.
- 4. Do not pull on the 6 pin wires.
- 5. The FKM O-ring of sensor has a temperature range of -20°C~250°C by default. For operating temperature below -20°C or harsh media, please contact the MICROSENSOR.

MICROSENSOR